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Abstract

PIC-code simulation results are presented where a space-
charge-dominated beam is transported in a lattice with
quadrupole rotation errors.  Two examples are studied in
detail: the circular lattice for the University of Maryland
Electron Ring (UMER) and the straight lattice from an
early design of a proposed heavy ion inertial fusion (HIF)
research experiment known as the Integrated Research
Experiment (IRE).  Reasonably small errors have little
effect.  However, the dependence on the strength of the
errors is nearly quadratic.  Slightly larger errors,
therefore, can cause deterioration in beam quality, as
manifest by a large increase in beam emittance and
formation of a halo, leading eventually to particle losses.
The simulations are accompanied by the moment
equations for such a system in the presence of beam
acceleration.

1  INTRODUCTION
Many applications, from heavy ion inertial fusion to high
energy colliders, are relying increasingly on high
brightness, space-charge-dominated, beams.  To
maintain the brightness of the beam during transport, it
is important to control lattice errors so as to minimize
emittance growth.  Accelerator lattice errors may give
rise to envelope mismatches and mismatches provide a
source of free energy which, if thermalized, can result in
emittance growth and hence brightness degradation.
Quadrupole rotation errors are an interesting class of
accelerator element misalignments, because the two
transverse (x and y) equations of motion become coupled
at linear order in the coordinates.

We perform simulations using the WARP code [1] to
investigate emittance growth under the presence of
quadrupole rotation errors.  Two generalized emittances
(defined below) give a measure of the phase space
occupied by the beam and so give a measure of inherent
beam-quality that would be ultimately achievable after
compensating skew (rotated) quadrupoles undo the
cumulative effects of small random rotation errors of the
focusing quadrupoles. The simulations address issues
such as reversibility of emittance growth, dependence on
space charge, role of nonlinearities, periodicity of errors,
and acceleration. For this paper, we will use simulations
performed on two machines: the University of Maryland
Electron Ring (UMER) [2] and the Integrated Research
Experiment in heavy ion fusion (IRE) [3].

2  GENERALIZED EMITTANCE
When quadrupole rotation errors are present, the x and y
normalized emittances are not conserved, even for a
beam with an initial Kapchinskij-Vladimirskij (K-V)
distribution with a linear space charge force profile
propagating under linear external forces.  However,  if
the equations of motion result from linear forces and are
derivable from a Hamiltonian system, constants of the
motion may be obtained analogous to the normalized x
and y emittances [4].  Further,  the K-V distribution has
been generalized [5] to distributions in which the
principal axes do not align with the x and y axes, and
moment equations have been derived [6] that assume the
space-charge profile remains linear, consistent with the
assumption of the KV-like distribution of ref. [5].  In ref.
[6], a drifting, non-relativistic beam was assumed, and a
conservation constraint was derived that is equivalent to
the first of the conservation constraints in ref. [4].

In this section, we generalize slightly the moment
equations of ref. [6] to include acceleration, and we
evaluate both the first and second independent
emittance-like conservation constraints of ref. [5].  In the
presence of non-linearities, either from space-charge or
the external focusing field, the underlying assumption of
a linear force profile is violated, and therefore the
derived constraints will evolve (usually increasing) along
the accelerator.  For simplicity we consider non-
relativistic beams.  We assume the space charge force
can be calculated from that of a beam with elliptical
symmetry but that is rotated with respect to the z
(longitudinal) axis. Using the same notation as ref. [6]
the transverse (x and y) equations of motion are:

d2x/dz2 = Kqxx x + Kqxy y +Ksxx  (x - <x>)

              + Ksxy (y - <y>) - (d ln βz / dz) x'

d2y/dz2 = Kqyy y + Kqxy x +Ksyy (y - <y>)
              + Ksxy (x - <x>) - (d ln βz / dz) y' (1)
Here βzc is the longitudinal velocity, and K with leading
subscript q is associated with external focusing from
quadrupoles whereas K with leading subscript s result
from space charge (cf. ref. 6.)

As in ref. [6], we may derive a set of ten first order
equations for the quadratic moments of the distribution,
here generalized slightly from ref. [6] to include
acceleration (the operator ∆ab≡<ab>-<a><b>):
d∆x2 / dz = 2∆xx'
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d∆xx' /dz= ∆x'
2 +K xx∆x2 + Kxy∆xy− (d lnβz / dz)∆xx'

22 ')/ln(2'2'2/' xdzdyxKxxKdzxd zxyxx ∆−∆+∆=∆ β

d∆y2 / dz= 2∆yy'

')/ln('/' 22 yydzdxyKyKydzyyd zxyyy ∆−∆+∆+∆=∆ β

d∆y' 2 /dz = 2Kyy∆yy' +2K xy∆xy' −2(d ln βz / dz)∆y'
2

d∆xy / dz = ∆xy' +∆x' y

d∆x' y / dz= ∆x' y' +Kxx∆xy+ Kxy∆y
2 − (d lnβz / dz)∆x' y

')/ln(''/' 2 xydzdxKxyKyxdzxyd zxyyy ∆−∆+∆+∆=∆ β
d∆x' y' /dz = K xx∆xy' +K xy∆yy' +K yy∆x' y+ K xy∆xx'

                   −2(d lnβz / dz)∆x' y'  (2)
Here Kxx=Kqxx+Ksxx, Kxy=Kqxy+Ksxy, and Kyy=Kqyy+Ksyy.
Using the procedures in ref. [4] we obtain the following
invariants which we denote as

)''''(16)(
2

1 2222 yxxyyxxynynxng ∆∆−∆∆++= βεεε

ε nh
2 = (εnx

2 εny
2 + (4β )4([∆xy∆x' y' ]2 + [∆xy' ∆x' y]2

         − ∆x2∆y2[∆x' y' ] 2 − ∆x2∆y' 2 [∆x' y]2

         − ∆x' 2 ∆y2[∆xy' ]2 − ∆x' 2 ∆y' 2 [∆xy] 2

         −2∆xy∆xy' ∆x' y∆x' y' +2∆xx' ∆y' 2 ∆xy∆x' y
         −2∆xx' ∆yy' ∆xy∆x' y' −2∆xx' ∆yy' ∆xy' ∆x' y

         +2∆x' 2 ∆yy' ∆xy∆xy' +2∆x2 ∆yy' ∆x' y∆x' y'

         2/12 ))''''2 xyyxyxx ∆∆∆∆+                (3)

Here, )]'['(16 22222 xxxxnx ∆−∆∆≡ βε  and

)]'['(16 22222 yyyyny ∆−∆∆≡ βε  are the squares of the

usual x and y normalized emittances.  Note that the
square of the generalized emittances ε ng

2  and ε nh
2

 reduce

to the arithmetic and geometric mean of ε nx
2  and ε ny

2 ,

respectively, in the absence of cross-correlations (i.e.
∆xy=∆x' y=∆xy' =∆x' y' =0), and so form two
independent quantities.

3  SIMULATIONS
Of particular interest is the response of actual machines,
such as UMER and the IRE, to quadrupole rotation
errors.  Early injector experiments at the University of
Maryland, for example, indicated a high sensitivity to
quadrupole rotations.  UMER is a circular machine
consisting of 36 FODO cells and 36 bending dipoles.
The nominal operating point of 10 keV and 100 mA
results in a generalized perveance of 0.0015.  With a
normalized emittance, εnx of 10 mm-mrad, this places the
beam in the highly space-charge-dominated regime, with
a tune-depression (ν/νο) of 0.14.  The average beam size
is about 1.0 cm.  For the moment, we have explored only
the case of a drifting beam.  The IRE on the other hand is
an induction linac.  A number of K+ ion beams are
injected at 1.6 MeV into a strong-focusing lattice and
then accelerated in parallel to 200 MeV.  The generalized
perveance at injection is similar to that of UMER

(0.0015).  The quantity εnx is 1.0 mm-mrad, placing it
further than UMER in the space-charge-dominated
regime.  The average beam size is 1.5 cm.  Please see
refs. [2-3] for further detail.  For the simulations, we used
the 2d3v version of WARP, with a resolution of 256 cells
across the beam pipe (~125 cells across the beam).  In
most cases we ran with 20,000 particles, and Gaussian
filtering to reduce numerical collisions.  We chose a
semi-gaussian initial distribution in most cases so as to
model a physical beam, although we occasionally used a
K-V distribution to compare against the theory.

Figure 1:  εng along 10 turns in UMER;  low current
(lower); nominal current, straight (upper) and periodic
(middle curve).

The simplest cases simulated are those of a drifting
beam in a straight lattice with linear magnets.  To isolate
the effect of space charge, we compared our simulation to
an equivalent emittance-dominated beam obtained by
reducing the current and increasing the emittance to
maintain the same beam size, while keeping the external
forces unchanged.  To both cases, we applied the same
random distribution of errors, with an rms width of 0.2°
(~ 4 mrad).  As shown in the bottom curve in Fig. 1, the
low-current beam exhibited almost no growth in the
generalized emittance.  The x and y rms emittances
oscillated about their initial values.  The beam rotation
angle performs a random walk yet remains constrained
within 3° (rms) from upright.  Increasing the space
charge to the nominal parameters of UMER results in
markedly different behavior.  The beam responds to the
same set of errors by “wobbling” more violently, with the
beam rotation angle exceeding 5° and continuing to
increase in amplitude of oscillation.  These large rotation
angles translate into rms mismatches in x and y, with
associated growth of the generalized [top curve of Fig. 1].
The rate of growth is slow initially, but experiences a
sudden boost as a halo forms, then levels off as the beam-
halo system reaches a new equilibrium.
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A drifting beam in a ring (as in UMER) experiences
random errors that repeat periodically every turn.  This
periodicity could introduce resonances that will further
degrade the beam.  Imposing this periodicity on our
UMER simulation, however, resulted in remarkably
different behavior.  The periodicity of the errors imposes
a periodicity on the beam rotation angle, preventing it
from growing uncontrollably.  Thus the rms mismatch in
our case does not grow to a sufficient level to induce a
halo.  Therefore, the generalized emittance [middle
curve, Fig. 1] grows steadily, but does not experience the
abrupt growth during the 4th turn.  Note that we have
only explored one set of parameters.  It may be possible
to see different behavior if we operate near a resonance.

Figure 2: εnx, εny (dotted) and εng (solid) for 10 turns of
UMER.

The emittance shown in Fig. 1 is the generalized
emittance, εng.  The standard εnx and εny follow a different
behavior.  Figure 2 compares εnx with εng for the case of
periodic errors shown in Fig. 1.  Whereas the generalized
emittance grows secularly and gradually, the standard x
emittance oscillates wildly.  The oscillations are due to
the fact that the beam is wobbling, and some of the
apparent emittance growth is reversible.  Note that εng

acts as a lower bound for εnx, thus representing the
nonreversible part of the emittance growth.

The beam rotation angle, as well as the emittance
growth, depends sensitively on the magnitude of the
errors.  Figure 3 displays the evolution of εnh in the IRE
for 2 values of errors. In both cases, an abrupt transition
occurs at the point where halo formation takes place.  In
the case with larger errors, the halo formation is more
severe (i.e., a larger fraction of the particles form the
halo).  It is evident that for smaller errors and prior to the
halo formation, the generalized emittance is more nearly
constant.  The case with no errors is included to mark the
numerical growth.  By improving the numerics, we can
obtain near zero emittance growth for the error-free case.
Note that the dependence on the numerics can change in

the presence of errors, as preliminary evidence seems to
indicate.  Hence we are pursuing the matter further.

Figure 3:  εnh along the IRE for an rms error of 0.2°
(upper), 0.1° (middle) and no error (lower curve).

4  CONCLUSIONS
As we find from the simulations presented here,
quadrupoles with small random rotations have a larger
impact on higher intensity beams.  We presented an
analytic derivation of a generalized emittance, which is
conserved in linear systems.  With the introduction of
nonlinearities in the space charge distribution as the
beam evolves, these generalized emittances are found to
grow, sometimes dramatically if a halo is formed.  An
interesting effect is observed if the errors are periodic, as
in a beam drifting in a ring, where the beam's response to
the errors appears to be periodic and bounded.
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